Current Path : /var/www/www-root/data/www/info.monolith-realty.ru/nl6bdggpp/index/ |
Current File : /var/www/www-root/data/www/info.monolith-realty.ru/nl6bdggpp/index/llama-ai-python.php |
<!DOCTYPE html> <html prefix="og: #" lang="en-US"> <head> <meta charset="UTF-8"> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <meta name="viewport" content="width=device-width, initial-scale=1"> <!-- Search Engine Optimization by Rank Math - --> <title></title> <meta name="description" content=""> <style id="rank-math-toc-block-style-inline-css"> .wp-block-rank-math-toc-block nav ol{counter-reset:item}.wp-block-rank-math-toc-block nav ol li{display:block}.wp-block-rank-math-toc-block nav ol li:before{content:counters(item, ".") ". ";counter-increment:item} </style> <style id="classic-theme-styles-inline-css"> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc( + 2px);font-size:}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <style id="global-styles-inline-css"> :root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--color--contrast: var(--contrast);--wp--preset--color--contrast-2: var(--contrast-2);--wp--preset--color--contrast-3: var(--contrast-3);--wp--preset--color--contrast-4: var(--contrast-4);--wp--preset--color--base: var(--base);--wp--preset--color--base-2: var(--base-2);--wp--preset--color--accent: var(--accent);--wp--preset--color--accent-2: var(--accent-2);--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: ;--wp--preset--spacing--30: ;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: ;--wp--preset--spacing--60: ;--wp--preset--spacing--70: ;--wp--preset--spacing--80: ;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: ;}:where(.is-layout-grid){gap: ;}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}:where(.){gap: 2em;}:where(.){gap: 2em;}:where(.){gap: ;}:where(.){gap: ;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.){gap: ;}:where(.){gap: ;} :where(.){gap: 2em;}:where(.){gap: 2em;} :root :where(.wp-block-pullquote){font-size: ;line-height: 1.6;} </style> <style id="generate-style-inline-css"> body{background-color:var(--base-2);color:var(--contrast-2);}a{color:var(--accent);}a:hover, a:focus, a:active{color:var(--accent-2);}.grid-container{max-width:1240px;}.wp-block-group__inner-container{max-width:1240px;margin-left:auto;margin-right:auto;}:root{--contrast:#1f1f1f;--contrast-2:#393939;--contrast-3:#acacac;--contrast-4:#d7d7d7;--base:#fbf6f3;--base-2:#ffffff;--accent:#c54f01;--accent-2:#dd5903;}:root .has-contrast-color{color:var(--contrast);}:root .has-contrast-background-color{background-color:var(--contrast);}:root .has-contrast-2-color{color:var(--contrast-2);}:root .has-contrast-2-background-color{background-color:var(--contrast-2);}:root .has-contrast-3-color{color:var(--contrast-3);}:root .has-contrast-3-background-color{background-color:var(--contrast-3);}:root .has-contrast-4-color{color:var(--contrast-4);}:root .has-contrast-4-background-color{background-color:var(--contrast-4);}:root .has-base-color{color:var(--base);}:root .has-base-background-color{background-color:var(--base);}:root .has-base-2-color{color:var(--base-2);}:root .has-base-2-background-color{background-color:var(--base-2);}:root .has-accent-color{color:var(--accent);}:root .has-accent-background-color{background-color:var(--accent);}:root .has-accent-2-color{color:var(--accent-2);}:root .has-accent-2-background-color{background-color:var(--accent-2);}.gp-modal:not(.gp-modal--open):not(.gp-modal--transition){display:none;}.gp-modal--transition:not(.gp-modal--open){pointer-events:none;}.gp-modal-overlay:not(.gp-modal-overlay--open):not(.gp-modal--transition){display:none;}.gp-modal__overlay{display:none;position:fixed;top:0;left:0;right:0;bottom:0;background:rgba(0,0,0,0.2);display:flex;justify-content:center;align-items:center;z-index:10000;backdrop-filter:blur(3px);transition:opacity 500ms ease;opacity:0;}.gp-modal--open:not(.gp-modal--transition) .gp-modal__overlay{opacity:1;}.gp-modal__container{max-width:100%;max-height:100vh;transform:scale(0.9);transition:transform 500ms ease;padding:0 10px;}.gp-modal--open:not(.gp-modal--transition) .gp-modal__container{transform:scale(1);}.search-modal-fields{display:flex;}.gp-search-modal .gp-modal__overlay{align-items:flex-start;padding-top:25vh;background:var(--gp-search-modal-overlay-bg-color);}.search-modal-form{width:500px;max-width:100%;background-color:var(--gp-search-modal-bg-color);color:var(--gp-search-modal-text-color);}.search-modal-form .search-field, .search-modal-form .search-field:focus{width:100%;height:60px;background-color:transparent;border:0;appearance:none;color:currentColor;}.search-modal-fields button, .search-modal-fields button:active, .search-modal-fields button:focus, .search-modal-fields button:hover{background-color:transparent;border:0;color:currentColor;width:60px;}h1{font-weight:700;font-size:42px;}@media (max-width:768px){h1{font-size:35px;}}h2{font-weight:700;text-transform:capitalize;font-size:30px;}@media (max-width:768px){h2{font-size:34px;}}h3{font-weight:700;text-transform:capitalize;font-size:27px;}@media (max-width:768px){h3{font-size:30px;}}h4{font-weight:700;font-size:25px;line-height:;}@media (max-width:768px){h4{font-size:24px;}}h5{font-weight:700;font-size:22px;}@media (max-width:768px){h5{font-size:21px;}}h6{font-weight:700;font-size:18px;}@media (max-width:768px){h6{font-size:17px;}}.main-navigation a, .main-navigation .menu-toggle, .main-navigation .menu-bar-items{font-weight:600;text-transform:uppercase;font-size:13px;}body, button, input, select, textarea{font-size:17px;letter-spacing:.40px;}body{line-height:1.6;}.main-title{text-transform:uppercase;font-size:25px;}.top-bar{background-color:var(--contrast-2);color:var(--base-2);}.top-bar a{color:var(--contrast-4);}.top-bar a:hover{color:var(--base-2);}.site-header{background-color:var(--base-2);}.main-title a,.main-title a:hover{color:var(--contrast);}.site-description{color:var(--contrast-3);}.main-navigation .main-nav ul li a, .main-navigation .menu-toggle, .main-navigation .menu-bar-items{color:#1e65a4;}.main-navigation .main-nav ul li:not([class*="current-menu-"]):hover > a, .main-navigation .main-nav ul li:not([class*="current-menu-"]):focus > a, .main-navigation .main-nav ul :not([class*="current-menu-"]) > a, .main-navigation .menu-bar-item:hover > a, .main-navigation . > a{color:var(--accent);}:hover,:focus{color:#1e65a4;}.main-navigation .main-nav ul li[class*="current-menu-"] > a{color:var(--accent-2);}.navigation-search input[type="search"],.navigation-search input[type="search"]:active, .navigation-search input[type="search"]:focus, .main-navigation .main-nav ul > a, .main-navigation .menu-bar-items . > a{color:var(--accent);}.main-navigation ul ul{background-color:var(--base-2);}.separate-containers .inside-article, .separate-containers .comments-area, .separate-containers .page-header, .one-container .container, .separate-containers .paging-navigation, .inside-page-header{color:var(--contrast-2);background-color:var(--base-2);}.inside-article a,.paging-navigation a,.comments-area a,.page-header a{color:var(--accent);}.inside-article a:hover,.paging-navigation a:hover,.comments-area a:hover,.page-header a:hover{color:var(--accent-2);}.entry-title a{color:#222222;}.entry-title a:hover{color:#55555e;}.entry-meta{color:#595959;}h1{color:var(--contrast);}h2{color:var(--contrast);}h3{color:var(--contrast);}h4{color:var(--contrast);}h5{color:var(--contrast);}h6{color:var(--contrast);}.sidebar .widget{background-color:var(--base-2);}.footer-widgets{background-color:var(--contrast-2);}.footer-widgets .widget-title{color:var(--base-2);}.site-info{color:var(--contrast-4);background-color:var(--contrast-2);}.site-info a{color:var(--contrast-4);}.site-info a:hover{color:var(--base-2);}.footer-bar .widget_nav_menu .current-menu-item a{color:var(--base-2);}input[type="text"],input[type="email"],input[type="url"],input[type="password"],input[type="search"],input[type="tel"],input[type="number"],textarea,select{color:var(--contrast-2);background-color:var(--base);border-color:var(--contrast-4);}input[type="text"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="password"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="number"]:focus,textarea:focus,select:focus{color:var(--contrast-2);background-color:var(--base-2);border-color:var(--contrast-3);}button,html input[type="button"],input[type="reset"],input[type="submit"],,:not(.has-background){color:var(--base-2);background-color:var(--accent);}button:hover,html input[type="button"]:hover,input[type="reset"]:hover,input[type="submit"]:hover,:hover,button:focus,html input[type="button"]:focus,input[type="reset"]:focus,input[type="submit"]:focus,:focus,:not(.has-background):active,:not(.has-background):focus,:not(.has-background):hover{color:var(--base-2);background-color:var(--contrast);}{background-color:rgba( 0,0,0,0.4 );color:#ffffff;}:hover,:focus{background-color:rgba( 0,0,0,0.6 );color:#ffffff;}:root{--gp-search-modal-bg-color:var(--contrast);--gp-search-modal-text-color:var(--contrast-4);--gp-search-modal-overlay-bg-color:rgba(56,56,56,0.4);}@media (max-width: 1084px){.main-navigation .menu-bar-item:hover > a, .main-navigation . > a{background:none;color:#1e65a4;}}.nav-below-header .main-navigation ., .nav-above-header .main-navigation .{padding:0px 26px 0px 26px;}.separate-containers .inside-article, .separate-containers .comments-area, .separate-containers .page-header, .separate-containers .paging-navigation, .one-container .site-content, .inside-page-header{padding:100px 30px 100px 30px;}.site-main .wp-block-group__inner-container{padding:100px 30px 100px 30px;}.separate-containers .paging-navigation{padding-top:20px;padding-bottom:20px;}.entry-content .alignwide, body:not(.no-sidebar) .entry-content .alignfull{margin-left:-30px;width:calc(100% + 60px);max-width:calc(100% + 60px);}. .site-main,. .site-main{margin-right:30px;}. .site-main,. .site-main{margin-left:30px;}. .site-main{margin:0px 30px 0px 30px;}.sidebar .widget, .page-header, .widget-area .main-navigation, .site-main > *{margin-bottom:30px;}.separate-containers .site-main{margin:30px;}.both-right .inside-left-sidebar,.both-left .inside-left-sidebar{margin-right:15px;}.both-right .inside-right-sidebar,.both-left .inside-right-sidebar{margin-left:15px;}. .post:not(:last-child):not(.is-loop-template-item), . .post:not(:last-child):not(.is-loop-template-item){padding-bottom:100px;}.separate-containers .featured-image{margin-top:30px;}.separate-containers .inside-right-sidebar, .separate-containers .inside-left-sidebar{margin-top:30px;margin-bottom:30px;}.main-navigation .main-nav ul li a,.menu-toggle,.main-navigation .menu-bar-item > a{padding-left:14px;padding-right:14px;}.main-navigation .main-nav ul ul li a{padding:10px 14px 10px 14px;}.rtl .menu-item-has-children .dropdown-menu-toggle{padding-left:14px;}.menu-item-has-children .dropdown-menu-toggle{padding-right:14px;}.rtl .main-navigation .main-nav ul > a{padding-right:14px;}@media (max-width:768px){.separate-containers .inside-article, .separate-containers .comments-area, .separate-containers .page-header, .separate-containers .paging-navigation, .one-container .site-content, .inside-page-header{padding:60px 20px 60px 20px;}.site-main .wp-block-group__inner-container{padding:60px 20px 60px 20px;}.inside-top-bar{padding-right:30px;padding-left:30px;}.inside-header{padding-right:30px;padding-left:30px;}.widget-area .widget{padding-top:30px;padding-right:30px;padding-bottom:30px;padding-left:30px;}.footer-widgets-container{padding-top:30px;padding-right:30px;padding-bottom:30px;padding-left:30px;}.inside-site-info{padding-right:30px;padding-left:30px;}.entry-content .alignwide, body:not(.no-sidebar) .entry-content .alignfull{margin-left:-20px;width:calc(100% + 40px);max-width:calc(100% + 40px);}.one-container .site-main .paging-navigation{margin-bottom:30px;}}/* End cached CSS */.is-right-sidebar{width:30%;}.is-left-sidebar{width:30%;}.site-content .content-area{width:100%;}@media (max-width: 1084px){.main-navigation .menu-toggle,.sidebar-nav-mobile:not(#sticky-placeholder){display:block;}.main-navigation ul,.gen-sidebar-nav,.main-navigation:not(.slideout-navigation):not(.toggled) .main-nav > ul,.has-inline-mobile-toggle #site-navigation .inside-navigation > *:not(.navigation-search):not(.main-nav){display:none;}.nav-align-right .inside-navigation,.nav-align-center .inside-navigation{justify-content:space-between;}} .dynamic-author-image-rounded{border-radius:100%;}.dynamic-featured-image, .dynamic-author-image{vertical-align:middle;}. .dynamic-content-template:not(:last-child), . .dynamic-content-template:not(:last-child){padding-bottom:0px;}.dynamic-entry-excerpt > p:last-child{margin-bottom:0px;} . .main-nav > ul > li > a{line-height:50px;} </style> <link rel="stylesheet" id="generate-offside-css" href="%20media=" all=""> <style id="generate-offside-inline-css"> :root{--gp-slideout-width:265px;}.{background-color:var(--contrast);}.slideout-navigation, .slideout-navigation a{color:#1e65a4;}.slideout-navigation {color:#1e65a4;padding-left:14px;padding-right:14px;}.slide-opened .menu-toggle:before{display:none;}@media (max-width: 1084px){.{display:none;}} </style> <link rel="stylesheet" id="generate-navigation-branding-css" href="%20media=" all=""> <style id="generate-navigation-branding-inline-css"> . ., . .inside-navigation:not(.grid-container){padding:0px 30px 0px 30px;}.:not(.grid-container) .inside-navigation:not(.grid-container) .navigation-branding{margin-left:10px;}.navigation-branding img, . img{height:60px;width:auto;}.navigation-branding .main-title{line-height:60px;}@media (max-width: 1084px){. .menu-bar-items, . .menu-bar-items{margin-left:auto;}.navigation-branding{margin-right:auto;margin-left:10px;}.navigation-branding .main-title, .mobile-header-navigation .site-logo{margin-left:10px;}. .{padding:0px;}} </style> <style id="wp-custom-css"> /* GeneratePress Site CSS */ /* Header */ .main-navigation:not(.is-open) .main-nav > ul { position: absolute; top: 0; left: 50%; transform: translateX(-50%); } @media (min-width: 769px) { .main-navigation:not(.slideout-navigation) { padding-left: 20px; padding-right: 20px; } } /* Slideout menu */ . . { padding: 0 10px; } .slideout-navigation .main-nav { margin-bottom: 14px; } /* Reset one container blog bottom padding */ . .post:not(:last-child):not(.is-loop-template-item), . .post:not(:last-child):not(.is-loop-template-item) { padding-bottom: initial; } /* Right sidebar*/ .inside-right-sidebar .wp-block-categories-list { list-style: none; margin: 0; } .inside-right-sidebar .wp-block-categories-list li:not(:last-child) { margin-bottom: ; } .latest-posts .gb-query-loop-item:last-child .gb-container { margin-bottom: 0; border-bottom: 0; } @media (max-width: 768px) { . { margin-top: 60px; } } /* Box shadow */ .box-shadow { box-shadow: 0px 0px 15px -4px rgba(0,0,0,0.3); } /* End GeneratePress Site CSS */ .author-box { display: flex; align-items: center; margin-top: 20px; padding: 15px; background-color: #f9f9f9; border: 1px solid #ddd; border-radius: 8px; } .author-avatar { margin-right: 15px; } .author-avatar img { border-radius: 50%; } .author-info h4 { margin: 0; font-size: ; color: #333; } .author-info p { margin: 5px 0; font-size: 1em; color: #666; } .author-posts-link { display: inline-block; margin-top: 10px; color: #0073aa; text-decoration: none; } .author-posts-link:hover { text-decoration: underline; } </style> </head> <body class="home page-template-default page page-id-49 wp-custom-logo wp-embed-responsive post-image-aligned-center slideout-enabled slideout-mobile sticky-menu-fade no-sidebar nav-below-header one-container header-aligned-left dropdown-hover" itemtype="" itemscope=""> <span class="screen-reader-text skip-link"><br> </span> <div class="site grid-container container hfeed" id="page"> <div class="site-content" id="content"> <div class="content-area" id="primary"> <div class="inside-article"> <div class="entry-content" itemprop="text"> <div class="homepage-content"> <h1 style="color: rgb(51, 51, 51);">Llama ai python. Find and fix vulnerabilities Actions.</h1> <br> <p style="margin: 20px auto; color: rgb(85, 85, 85); max-width: 800px; text-align: center;">Llama ai python You will be pleased to know that the Data Professor YouTube channel has recently released It is designed to simplify the complexity of AI application development and address various pain points in AI agent development. Plan and track work Meta Code Llama - a large language model used for coding. 1 model from Hugging Face🤗 and running it on your local machine This page describes how to interact with the Llama 2 large language model (LLM) locally using Python, without requiring internet, registration, or API keys. Once deployed, configure LlamaIndex to use it with the following settings: All 1,426 Python 657 Jupyter Notebook 169 TypeScript 106 JavaScript 82 C++ 39 Rust 37 Go 35 HTML 31 C# 23 C 15. Contribute to ollama/ollama-python development by creating an account on GitHub. You can explore,clean Llama for Python Programmers is designed for programmers who want to leverage the Llama 2 large language model (LLM) and take advantage of the generative artificial intelligence (AI) revolution. Anything else will be sent to Llama AI. Automate any workflow Codespaces. It can recognize your voice, process natural language, and perform various actions based on your commands: summarizing text, rephasing sentences, answering questions, writing emails, and more. We will show how to build an AI assistant that analyzes a CSV file with socioeconomic data, runs code to analyze them, and generates a chart as a result. Manage code changes llama-cpp-python offers a web server which aims to act as a drop-in replacement for the OpenAI API. This is cool. Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs; The complete Llama Stack lesson Colab notebook of the new Llama 3. What is PandasAI,Llama 3 and Ollama PandasAI: This library bridges the gap between Pandas DataFrames and LLMs, allowing you to interact with your data using natural language. 3 70B. And there you have it! You’ve just learned how to access and interact with Meta’s Llama 3. 3 70B LLM in Python on a local computer. 1 on Together AI and using Llama. Interactive Chat + 3 more. The Llama2 model can be used in If you are interested in learning how to use the new Llama 2 artificial intelligence LLM with Python code. - yml-blog/llama-docker. TL;DR: we are releasing our public preview of OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA. In this post, we demonstrate how to fine-tune Meta’s latest Llama 3. Dec 14. 3 represents a significant advancement in the field of AI language models. 2 models, you can unlock the models’ enhanced reasoning, code Learn to implement and run Llama 3 using Hugging Face Transformers. Start building awesome AI Projects with LlamaAPI In this guide you will find the essential In this blog, I will guide you through the process of cloning the Llama 3. Both libraries include all the features of the Ollama REST API, are familiar in design, and compatible with new and previous versions of Ollama. Python is one of the most common programming languages used to implement LLaMA Llama. Developed by Meta AI on Aprile 2024, Llama-3 excels at tasks like generating different creative text formats, Give your token a descriptive name (e. core. 3 70B model is smaller, and it can run on computers with lower-end hardware. In this example we'll cover a more advanced use case of JSON_SCHEMA mode to stream out partial models. 3 Python = Powerful AI Research Agent In this video, I have a super quick tutorial showing you how to create a multi-agent chatbot with Pydantic AI, Web Scraper from llama_index. I do not view ChatGPT or Llama as a threat to my job, at least not yet. cpp + gpt4all - nomic-ai/pygpt4all. 11/25/24. 2’s vision model opens up new possibilities in computer vision tasks. Sign in Product GitHub Copilot. AI news in the past 7 days has been insane, with so much happening in the world of AI. For our tuning process, we will take a dataset containing about 18,000 examples where the model is asked to build a Python code that solves a given task. 32GB 9. In. Includes LlamaGuard, This guide provides information and resources to help you set up Llama including how to access the model, hosting, In this post, I’ll guide you through building an AI Agent from scratch using OpenAI models and Python, with a particular focus on the Langchain library. 3 Python = Powerful AI Research Agent In this video, I have a super quick tutorial showing you how to create a multi-agent chatbot with Pydantic AI, Web Scraper Quick guide to start a Llama Stack server. Now that LLaMA-3 is released, we will recreate it in a simpler manner. With the help of advanced AI models, it easily meets the OCR processing needs of complex documents. Last updated on . This is a time-saving alternative to extensive prompt engineering and can be used to obtain structured outputs. CPP can work almost everywhere — on a CPU, CUDA, or Apple Silicon. tensor_split = self. Includes This guide provides information and resources to help you set up Llama including how to access the model, hosting, how-to and integration guides Llama 3. Introduction. ollama import Ollama llm = Ollama(model='llama3') messages = [ ChatMessage( role='system', content='you are a thesaurus bot that replaces the words in news headlines with more esoteric synonyms' ), ChatMessage( role='user', content='A heat wave not seen in decades will send python: A specialized variation of Code Llama further fine-tuned on 100B tokens of Python code: code: Base model for code completion: Example prompts Ask questions ollama run codellama:7b-instruct 'You are an expert Contribute to abetlen/llama-cpp-python development by creating an account on GitHub. The year 2024 is turning out to be one of the best years in terms of progress on Generative AI. 3 70B Requirements Category Requirement Details Model Specifications Parameters 70 billion Llama-3. . Before we start, I’m assuming that you guys already have the concepts of containerization, large language models, and Python. GPT Llama Python Example with Pandas-ai. Llama 3 is freely accessible, encouraging innovation in AI development and beyond. 3 70B model offers similar performance compared to the older Llama 3. use_mlock = use_mlock # kv_overrides is To get started with Llama’s LLMs in Python, follow these steps: Prerequisites. vocab_only = vocab_only self. cpp package. We’ll integrate this agent into a Slack – In this tutorial, we explain how to install and run Llama 3. Oracle Cloud Infrastructure Generative AI OctoAI Ollama - Llama 3. python-essentials-for-ai. llms. 17 42. Acknowledgements. This web server can be used to serve local models and easily connect them to existing clients. Please use the following repos going forward: Pydantic AI + Web Scraper + Llama 3. 1, which has yet again taken the world by . Please use the following repos going forward: A step-by-step guide to building the complete architecture of the Llama 3 model from scratch and performing training and inferencing on a custom dataset. Just last week, we had Open AI launch GPT-4o mini, and just yesterday (23rd July 2024), we had Meta launch Llama 3. This allows you to use llama. Thank you for developing with Llama models. Llama. Pydantic AI + Web Scraper + Llama 3. Since then, the RamaLama community has been busy, contributing tools and workflows to simplify AI integration. - nrl-ai/llama-assistant The Official Python Client for Lamini's API. 1 using AWS Bedrock. 1 in your projects, Python Version: Python 3. 1 is an advanced AI model developed by Meta, and it’s known for its powerful capabilities in natural language processing. This comprehensive guide covers setup, model download, and creating an AI chatbot. Llama-cpp-python and stable diffusion. 1 Ollama - Gemma OpenAI OpenAI JSON Mode vs. cpp compatible models with any OpenAI compatible client (language libraries, services, etc). Python. Original Llama. Multimodal GenAI experience: Q&A on uploaded images. _c_tensor_split self. We are releasing a series of 3B, 7B and 13B models trained on different data mixtures. First, install the OpenAI Python is one of the most common programming languages used to implement In this guide, we'll explore how to deploy LLama2 on platforms like AWS SageMaker and HuggingFace, discuss associated costs, and delve into innovative techniques and tools like quantization, LoRA and Ollama for local Meta AI has released this open-source large language model, Llama2, which has significantly improved performance and is free for both research and commercial use. ai and Python. Fine-tuning Llama 3. To install the server package and get started: LLaMA 3 is one of the most promising open-source model after Mistral, solving a wide range of tasks. 7 or higher; Memory: At least 16GB Our open-source libraries and models for those taking our AI learnings further through software and app development Our approach Shaping the next wave of innovation through access of Llama's open platform featuring AI models, tools, and resources A Python library that enables faster development and evaluation of cross-lingual word Although generative AI applications have gained massive traction, the challenge of building efficient and consistent applications and deploying them remains to be solved. A basic knowledge of Python and Pytorch is required. 79GB 6. It provides a simple and expressive way to work with graphs, allowing developers to perform various operations on graph data, Generate your next app with Llama 3. This example shows how to use the Openai client with LlamaAPI Llama (Large Language Model Meta AI, formerly stylized as LLaMA) is a family of autoregressive large language models (LLMs) released by Meta AI starting in February 2023. llms import ChatMessage from llama_index. Learn how to create a simple, offline chatbot using llama that runs locally on you Official supported Python bindings for llama. I previously wrote a blog on Medium about creating an LLM with over 2. Purple Llama Tools to evaluate and improve the security of your LLM. ai llama lora gemma mistral fine-tuning finetuning llm llms qlora unsloth llama3 phi3 gemma2. Our local computer has NVIDIA 3090 GPU with 24 GB RAM. [2] [3] The latest version is Llama 3. TGI provides high performance text generation services for the On July 24th,2024 Google Cloud announced the addition of the Llama 3. Note that AzureOpenAI is not included in the llama-index package and must be installed separately. [4]Llama models are trained at different parameter sizes, ranging between 1B and 405B. 2 course on Deeplearning. AI-powered assistant to help you with your daily tasks, powered by Llama 3. 1-Nemotron-70B-Instruct is a large language model customized by NVIDIA in order to improve the helpfulness of LLM generated responses. Write better code with AI Security. 3, released in December 2024. Model name Model size Model download size Memory required Nous Hermes Llama 2 7B Chat (GGML q4_0) 7B 3. Design intelligent agents that execute multi-step processes autonomously. g. We’re using the ChatGroq library to initialize the Llama 3 model, which is one of the latest and most advanced AI models available. 29GB Nous Hermes Llama 2 13B Chat (GGML q4_0) 13B 7. Llama 3. 7+ application. Direct output in Markdown format adds even more convenience and efficiency! 🧙♂️ I am an AI Generative expert! Python: llama-stack-client-python: Swift: llama-stack-client-swift: Node: The complete Llama Stack lesson Colab notebook of the new Llama 3. Instead, I believe it can assist me in writing smarter solutions to solve more significant problems. _c_tensor_split = FloatArray (* tensor_split # type: ignore) # keep a reference to the array so it is not gc'd self. js. python AI_app. On Friday, December 6, Eastern Time, Meta announced the launch of a new Llama series generative AI model: Llama 3. Our model weights can serve as the drop in replacement of LLaMA in existing implementations. ai. Updated Dec 12, 2024; Python; ymcui / Ever dreamt of creating your very own AI-powered chatbot but didn’t know where to start? Fear not! Notice we’re using the Llama Index to initialize our LLM. Setup Installation. This is an extraction of the original dataset [2], where only the Python To construct the summarization instrument, you’ll have to arrange a Python atmosphere with particular libraries and guarantee entry to the Llama model. Here is an example of a conversation: Llama CLI Chat - Type 'exit' to quit. Support for running custom models is on the roadmap. Write better code with AI 01. Llama Stack, an open-source project by Meta, With this you can easily prompt the AI with a message and get a response, directly from your Python code. py. A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples Defines and standardizes the building blocks needed to bring generative AI applications to market. 1 405B model. The dataset for tuning. · LLaMA 2-CHAT as good as OpenAI ChatGPT. Explore a practical example of using Llama with Pandas-ai for enhanced data manipulation and analysis in Python. 1 family of models, including a new 405B model — Meta’s most powerful and versatile model to date — to Vertex AI Model Llama-OCR is an excellent assistant for developers and content creators. However, the Llama 3. Clone Phidata Repository: Clone the Phidata Git repository or download the code from the repository. Llama 2 uses the transformer model for training. Hugging Face Partner Integrations. Instant dev environments Issues. llama-cpp-python offers an OpenAI API compatible web server. NO API KEY REQUIRED. 2 is out! Today, we welcome the next iteration of the Llama collection to Hugging Face. 82GB Nous Hermes Llama 2 Building a local Gen-AI chatbot using Python & Ollama and Llama3 is an exciting project that allows you to harness the power of AI without the need for costly subscriptions or external servers. 1, Meta’s latest large language model, offers advanced capabilities for natural language processing tasks. Transformers. Skip to content. AI at Meta on X: “Introducing Meta Llama 3: the most capable openly available LLM to date. Contribute to lamini-ai/lamini development by creating an account on GitHub. As part of the Llama 3. Tutorials on ML fundamentals, LLMs, RAGs, LangChain, LangGraph, Fine-tuning Llama 3 & AI Agents (CrewAI) - curiousily/AI-Bootcamp. We llama-cpp-python supports speculative decoding which allows the model to generate completions based on a draft model. A foundation for building RAG applications with LlamaIndex. # Load human tools to enhance the AI's capabilities human_tools = load_tools(["human"]) This level of interactivity is what makes AI so powerful and valuable in real-world applications. h from Python; Provide a high-level Python API that can be used as a drop-in replacement for the OpenAI API so existing apps can be easily ported to use llama. By using the pre-built solutions available in SageMaker JumpStart and the customizable Meta Llama 3. Learn more. The server can be installed by running the following command: pip install llama-cpp-python [server] Llama 3. It currently depends on the iproute command to locate network interfaces on the host system, and hence only runs on linux systems which provide iproute. No, Meta AI Llama 3 is not currently available for direct public use, but the underlying code (Llama 3) is open-source. 3 million parameters from scratch using the LLaMA architecture. With a single variant boasting 70 billion parameters, this model delivers efficient and powerful solutions for a wide range of applications, from edge devices to large-scale cloud deployments. cpp is a high-performance tool for running language model inference on various hardware configurations. Python 100 Apache-2. 1 and Together AI Turn your idea into an app. Function Calling for Data Extraction OpenLLM OpenRouter Python SDK services types message_queues message_queues apache_kafka rabbitmq redis simple Llama Packs Llama Packs Dockerized AI with CUDA. ai Web-LLM. This approach saves time, bridges the gap between technical and non-technical users, and opens up endless possibilities for automation and innovation. Set Up Environment: Create a new Python environment using Conda, then install the necessary Wrapping It Up. You’ve just built a powerful pipeline that transforms natural language descriptions into Python code using Together AI. Currently, LlamaGPT supports the following models. [5] Originally, Llama was only available as a Create a python virtual environment and install the python dependencies: cd backend python3 -m venv venv source venv/bin/activate poetry install You will also need to ensure the environment variables are accessible. 14. Step 1: Install the OpenAI Python Client. Just pass this as a draft model to the Llama class during initialization. This model, an evolution of its predecessor, Llama, not only matches LLaMA 3. Find and fix vulnerabilities Actions. Find and Defines and standardizes the building blocks needed to bring generative AI applications to market. We will deliver prompts to the model and get AI In this guide, we will walk through the steps necessary to set up and run your very own Python Gen-AI chatbot using the Ollama framework & that save your chat History to talk relevance for future communication. 3 with 7 billion parameters, also known as Llama 3. 1 release, we’ve consolidated GitHub repos and added some additional repos as we’ve expanded Llama’s functionality into being an e2e Llama Stack. cpp; Any contributions and changes to this package will be made with In our previous blog post, we introduced the RamaLama project, a bold initiative aimed at making AI development and deployment delightfully boring by leveraging the power of OCI containers. 1 with Python, sharing insights from my own experiences. 🦜️ LangChain + Streamlit🔥+ Llama 🦙: Bringing Conversational AI to Your Local Machine generative ai, chatgpt, how to use llm offline, large language models, how to make offline chatbot, document question answering using llama-cpp-python¶ Recently llama-cpp-python added support for structured outputs via JSON schema mode. Navigate to Azure AI Studio and deploy your chosen model. CPP. cpp and access the full C API in llama. Navigation Menu Toggle navigation. This capability is further enhanced by the llama-cpp-python Python bindings which provide a seamless interface between Llama. ipynb. Automate any workflow Codespaces Hello LLM beginners! Ever wondered how to build your own interactive AI chatbot, right on your local machine? Well, grab your coding hat and step into the exciting world of open-source libraries AI Bots - Robotic Processing automation Python and Julia lang scripts to support automating repetitive tasks - AmitXShukla/RPA. Meta AI is connected to the internet, so you will be able to get the latest real-time responses from the Run the application by writing `Python` and the file name in the terminal. Additional Resources. At the is a framework written in Rust and Python for deploying and serving LLMs. The first project we will test is Llama. The Llama 3 model is available in two publicly released versions, 8B and 70B. The framework for autonomous intelligence. It allows you to ask questions, generate visualizations, cleanse datasets, and improve data quality through feature generation. This guide will provide more insight into how you can harness the power of Python and leveraging Meta’s latest large language model in the form of Llama 3, Assembly AI, and Eleven Labs APIs, to LLama2, Meta's open-source language model, has made waves in the AI community with its impressive capabilities and cost-effective deployment options. Right here’s a listing of stipulations: Python Libraries: transformers: This library by Hugging Face permits you to load the Llama model. use_mmap = use_mmap if lora_path is None else False self. Plan and track work Code Review. We walked through setting up your environment, connecting to AWS AI app templates are well-maintained, easy to deploy, Code Llama. I originally wrote this package for my own use with two goals in mind: Provide a simple process to install llama. , “Llama-3 Python Integration”). CPP is written in C++, but I will be using a Python library, which is easier to use. LLamar is a "pure" Python 3 implementation of Microsoft's Link Local Multicast Name Resolution protocol LLMNR. Official supported Python bindings for llama. MLC. The assistant will be powered by Llama 3. In this guide, we will walk through the steps necessary to set up and run your very own Python Gen-AI chatbot using the Ollama framework & that save your chat History to The Llama Stack Client Python library provides convenient access to the Llama Stack Client REST API from any Python 3. You’ve just built a powerful pipeline that transforms natural language descriptions into Python In this guide, I’ll walk you through the process of using Llama 3. model_params. All the source code for this tutorial is Conclusion. 2 text generation models, Llama 3. 0 24 8 (1 issue needs help) 6 Updated Dec 21, 2024. Running the LLama Model in a Docker Container generated by DALL-E. Configuring AzureOpenAI. Navigate to the RAG Directory: Access the RAG directory within the Phidata repository. The initial versions of the Ollama Python and JavaScript libraries are now available, making it easy to integrate your Python or JavaScript, or Typescript app with Ollama in a few lines of code. 2. Llama Coder GitHub Repo Powered by Llama 3. The fastest way to use speculative decoding is through the LlamaPromptLookupDecoding class. Instant dev environments Issues meta-llama/llama-stack-client-python’s past year of commit activity. If you’re looking to use Llama 3. By utilizing Llama AI, you can interpret natural language queries and convert them into Python code or SQL queries. We have created our own RAG AI application locally with few lines of code. Python-based framework for querying and manipulating graph data structures. The Meta AI team says that Llama 3 has the potential to be the initiator of a new wave of innovation in AI. These bindings allow for both low-level C API access and high-level Python APIs. LLAMA_MAX_DEVICES self. In this course, you’ll learn how open-source LLMs can run on self-hosted hardware, made possible through techniques such as quantization by using the llama. 2 1B and 3B, using Amazon SageMaker JumpStart for domain-specific applications. Navigation Product GitHub Copilot. cpp & Llama-cpp-python. cpp and Python. One of the contributions we’d like to spotlight today is Whether you’re processing images for analysis, generating visual content, or building AI-driven applications, Llama 3. Model: shadcn/ui: What is a Llama? Llama is a large language model(LLM) that is trained by Meta AI that helps to understand and respond to human inputs and develop human-like text. 1 405B. The library includes type definitions for all request params and response fields, and offers both synchronous and Download LLAMA 3: Obtain LLAMA 3 from its official website. Build your own AI chatbot in Python with this detailed step-by-step guide. A Zero-to-Hero Guide that guide you through all the key components of Llama. The PandasAI library provides a Python interface for interacting with your data using natural language. I use it often because it’s great for testing LLMs on different hardware. <a href=http://arena.mlgr.ru:80/rxwhs9u/naked-ass-self-petite-teen.html>xmj</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/icloud-lock-fix-iphone-6.html>fhi</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/best-kaspa.html>mjri</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/sccm-1906-co-management.html>rutvl</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/2016-gmc-yukon-power-liftgate-problem-forum-2017.html>dewe</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/create-fivem-server.html>btwpq</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/1966-chevy-c10-bolt-pattern.html>lpvbwa</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/kabel-deutschland-einbruch.html>hezv</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/cracked-moment-of-inertia-example-in-concrete-pdf.html>fbvjxuc</a> <a href=http://arena.mlgr.ru:80/rxwhs9u/business-ideas-under-200k.html>yycnm</a> </p> </div> </div> </div> </div> </div> </div> <nav id="generate-slideout-menu" class="main-navigation slideout-navigation" itemtype="" itemscope=""></nav> <div class="inside-navigation grid-container grid-parent"> </div> <!-- .inside-navigation --> <!-- #site-navigation --> <div class="slideout-overlay"> <button class="slideout-exit has-svg-icon"> <span class="gp-icon pro-close"> <svg viewbox="0 0 512 512" aria-hidden="true" role="img" version="1.1" xmlns="" xmlns:xlink="" width="1em" height="1em"> <path d=" 0L256 0 0 0 0L256 256 "> </path> </svg></span> <span class="screen-reader-text">Close</span> </button> </div> <div class="gp-modal gp-search-modal" id="gp-search"> <div class="gp-modal__overlay" tabindex="-1" data-gpmodal-close=""> <div class="gp-modal__container"> <form role="search" method="get" class="search-modal-form" action=""> <label for="search-modal-input" class="screen-reader-text">Search for:</label> <div class="search-modal-fields"> <input id="search-modal-input" class="search-field" placeholder="Search …" value="" name="s" type="search"> <button aria-label="Search"><span class="gp-icon icon-search"><svg viewbox="0 0 512 512" aria-hidden="true" xmlns="" width="1em" height="1em"><path fill-rule="evenodd" clip-rule="evenodd" d="M208 0-160 160 160 160 48 208 48zM0 208C0 0 208 0s208 208 208c0 416 208 416 416 0 0 208z"></path></svg></span></button> </div> </form> </div> </div> </div> <!--[if lte IE 11]> <![endif]--> <!-- Page cached by LiteSpeed Cache on 2024-12-04 06:13:15 --> </body> </html>