Your IP : 3.14.144.101


Current Path : /var/www/www-root/data/www/info.monolith-realty.ru/nl6bdggpp/index/
Upload File :
Current File : /var/www/www-root/data/www/info.monolith-realty.ru/nl6bdggpp/index/llava-explained.php

<!DOCTYPE html>
<html lang="en-US">
<head>

	
  <meta charset="UTF-8">

	
  <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=10.0, user-scalable=yes">

	
  <title></title>
 

  <style id="wp-emoji-styles-inline-css" type="text/css">

	,  {
		display: inline !important;
		border: none !important;
		box-shadow: none !important;
		height: 1em !important;
		width: 1em !important;
		margin: 0  !important;
		vertical-align:  !important;
		background: none !important;
		padding: 0 !important;
	}
  </style>
  <style id="pdfemb-pdf-embedder-viewer-style-inline-css" type="text/css">
.wp-block-pdfemb-pdf-embedder-viewer{max-width:none}

  </style>
  <style id="classic-theme-styles-inline-css" type="text/css">
/*! This file is auto-generated */
.wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc( + 2px);font-size:}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none}
  </style>
  <style id="global-styles-inline-css" type="text/css">
body{--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: ;--wp--preset--spacing--30: ;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: ;--wp--preset--spacing--60: ;--wp--preset--spacing--70: ;--wp--preset--spacing--80: ;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: ;}:where(.is-layout-grid){gap: ;}body .is-layout-flex{display: flex;}body .is-layout-flex{flex-wrap: wrap;align-items: center;}body .is-layout-flex > *{margin: 0;}body .is-layout-grid{display: grid;}body .is-layout-grid > *{margin: 0;}:where(.){gap: 2em;}:where(.){gap: 2em;}:where(.){gap: ;}:where(.){gap: ;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;}
.wp-block-navigation a:where(:not(.wp-element-button)){color: inherit;}
:where(.){gap: ;}:where(.){gap: ;}
:where(.){gap: 2em;}:where(.){gap: 2em;}
.wp-block-pullquote{font-size: ;line-height: 1.6;}
  </style>
  

  <style id="customify-style-inline-css" type="text/css">
.customify-container, .layout-contained, .site-framed .site, .site-boxed .site { max-width: 1300px; } .main-layout-content .entry-content > .alignwide { width: calc( 1300px - 4em ); max-width: 100vw;  }#blog-posts .posts-layout .entry-media {border-radius: 0px;}.single-post .content-inner {max-width: 1200px;}.header-top .header--row-inner,body:not(.fl-builder-edit) .button,body:not(.fl-builder-edit) button:not(.menu-mobile-toggle, .components-button, .customize-partial-edit-shortcut-button),body:not(.fl-builder-edit) input[type="button"]:not(.ed_button),,input[type="button"]:not(.ed_button, .components-button, .customize-partial-edit-shortcut-button),input[type="reset"]:not(.components-button, .customize-partial-edit-shortcut-button),input[type="submit"]:not(.components-button, .customize-partial-edit-shortcut-button),.pagination .nav-links > *:hover,.pagination .nav-links span,. .primary-menu-ul >  > a,. .primary-menu-ul >  > a,. .primary-menu-ul > li > a:hover,.posts-layout .readmore-button:hover{    background-color: #235787;}.posts-layout .readmore-button {color: #235787;}.pagination .nav-links > *:hover,.pagination .nav-links span,.entry-single .tags-links a:hover,.entry-single .cat-links a:hover,.posts-layout .readmore-button,.posts-layout .readmore-button:hover{    border-color: #235787;}.customify-builder-btn{    background-color: #c3512f;}body{    color: #0a0a0a;}abbr, acronym {    border-bottom-color: #0a0a0a;}a                {                    color: #636363;}a:hover,a:focus,.link-meta:hover, .link-meta a:hover{    color: #111111;}h2 + h3,.comments-area h2 + .comments-title,.h2 + h3,.comments-area .h2 + .comments-title,.page-breadcrumb {    border-top-color: #eaecee;}blockquote,.site-content .widget-area .menu  > a:before{    border-left-color: #eaecee;}@media screen and (min-width: 64em) {    .comment-list .children  {        border-left-color: #eaecee;    }    .comment-list .children :after {        background-color: #eaecee;    }}.page-titlebar, .page-breadcrumb,.posts-layout .entry-inner {    border-bottom-color: #eaecee;}.header-search-form .search-field,.entry-content .page-links a,.header-search-modal,.pagination .nav-links > *,.entry-footer .tags-links a, .entry-footer .cat-links a,.search .content-area article,.site-content .widget-area .menu  > a,.posts-layout .entry-inner,.post-navigation .nav-links, .comment-meta,.widget-area .widget_pages li a, .widget-area .widget_categories li a, .widget-area .widget_archive li a, .widget-area .widget_meta li a, .widget-area .widget_nav_menu li a, .widget-area .widget_product_categories li a, .widget-area .widget_recent_entries li a, .widget-area .widget_rss li a,.widget-area .widget_recent_comments li{    border-color: #eaecee;}.header-search-modal::before {    border-top-color: #eaecee;    border-left-color: #eaecee;}@media screen and (min-width: 48em) {    . .content-area {        border-right-color: #eaecee;    }    . .content-area {        border-left-color: #eaecee;    }    . .sidebar-primary {        border-right-color: #eaecee;    }    . .sidebar-secondary {        border-right-color: #eaecee;    }    . .sidebar-primary {        border-left-color: #eaecee;    }    . .sidebar-secondary {        border-left-color: #eaecee;    }    . .content-area {        border-left-color: #eaecee;        border-right-color: #eaecee;    }    . .content-area {        border-left-color: #eaecee;        border-right-color: #eaecee;    }} .comment-post-author {background: #6d6d6d;}.pagination .nav-links > *,.link-meta,.link-meta a,.color-meta,.entry-single .tags-links:before,.entry-single .cats-links:before{    color: #6d6d6d;}h1, h2, h3, h4, h5, h6 { color: #2b2b2b;}.site-content .widget-title { color: #444444;}body {font-family: "Poppins";font-style: normal;font-weight: normal;text-decoration: none;}h1, h2, h3, h4, h5, h6, .h1, .h2, .h3, .h4, .h5, .h6 {text-transform: uppercase;}.site-content .widget-title {font-family: "Poppins";font-weight: normal;}.site-branding .site-title, .site-branding .site-title a {text-transform: capitalize;font-size: 9px;}.entry-content h1, .wp-block h1, .entry-single .entry-title {font-size: 34px;line-height: 52px;}.entry-content h5, .wp-block h5 {font-family: "Poppins";font-weight: 100;text-transform: uppercase;}.entry-content h6, .wp-block h6 {font-family: "Poppins";font-weight: 100;font-size: 13px;}#page-cover {background-image: url("");}.header--row:not(.header--transparent).header-top .header--row-inner  {background-color: #ffffff;} .header--row:not(.header--transparent).header-main .header--row-inner  {border-style: none;} .header--row:not(.header--transparent).header-bottom .header--row-inner  {background-color: #ffffff;border-style: none;} #header-menu-sidebar-bg  {color: #000000; text-decoration-color: #000000;} .sub-menu .li-duplicator {display:none !important;}.header-search_icon-item .header-search-modal  {border-style: solid;} .header-search_icon-item .search-field  {border-style: solid;} .dark-mode .header-search_box-item .search-form-fields, .header-search_box-item .search-form-fields  {border-style: solid;} . .primary-menu-ul > li > a .link-before:before, . .primary-menu-ul > li > a .link-before:before  { height: 2px; }. .primary-menu-ul > li > a .link-before:before { bottom: -4px; } . .primary-menu-ul > li > a .link-before:before { top: -4px; }.builder-item--primary-menu .nav-icon-angle { width: 5px; height: 5px; }.builder-item--primary-menu .nav-menu-desktop .primary-menu-ul > li > a  {color: #0a0a0a; text-decoration-color: #0a0a0a;} .header--row:not(.header--transparent) .builder-item--primary-menu .nav-menu-desktop .primary-menu-ul > li > a:hover, .header--row:not(.header--transparent) .builder-item--primary-menu .nav-menu-desktop .primary-menu-ul >  > a, .header--row:not(.header--transparent) .builder-item--primary-menu .nav-menu-desktop .primary-menu-ul >  > a, .header--row:not(.header--transparent) .builder-item--primary-menu .nav-menu-desktop .primary-menu-ul >  > a  {color: #0a0a0a; text-decoration-color: #0a0a0a;} .builder-item--primary-menu .nav-menu-desktop .primary-menu-ul > li > a,.builder-item-sidebar .primary-menu-sidebar .primary-menu-ul > li > a {font-size: 14px;} {font-size: 13px;}  {background-color: #f70909;} .builder-item--footer_copyright, .builder-item--footer_copyright p {text-decoration: none;text-transform: none;font-size: 12px;line-height: 16px;letter-spacing: 0px;}. li a {border-style: solid;}body  {background-color: #FFFFFF;} .site-content .content-area  {background-color: #FFFFFF;} /* CSS for desktop */#page-cover .page-cover-inner {min-height: 0px;}. .customify-grid, . .style-full-height .primary-menu-ul > li > a {min-height: 37px;}. .customify-grid, . .style-full-height .primary-menu-ul > li > a {min-height: 0px;}. .customify-grid, . .style-full-height .primary-menu-ul > li > a {min-height: 55px;}.site-header .site-branding img { max-width: 176px; } .site-header .cb-row--mobile .site-branding img { width: 176px; }.header--row .builder-item--logo, . . {margin-top: 15px;margin-right: 15px;margin-bottom: 15px;margin-left: 15px;}.header--row .builder-first--nav-icon {text-align: right;}.header-search_icon-item svg {height: 25px; width: 25px;}.header-search_icon-item .search-icon {padding: 0px;}.header-search_icon-item .header-search-form .search-field {height: 35px;}.header-search_icon-item .header-search-modal {width: 250px;}.header-search_icon-item .search-submit svg {height: 5px; width: 5px;}.header-search_icon-item .search-submit {margin-left: -40px;}.header-search_box-item .search-submit{margin-left: -40px;} .header-search_box-item .woo_bootster_search .search-submit{margin-left: -40px;} .header-search_box-item .header-search-form {margin-left:-40px;}.header--row .builder-first--primary-menu {text-align: right;}. li a { font-size: 10px; }. li {margin-left: 0px; margin-right: 0px;}.footer--row .builder-item--footer-1, . . {margin-top: 0px;margin-right: 0px;margin-bottom: 0px;margin-left: 0px;}. li a { font-size: 25px; }. li a {padding: ;}. li {margin-left: 4px; margin-right: 4px;}/* CSS for tablet */@media screen and (max-width: 1024px) { #page-cover .page-cover-inner {min-height: 250px;}.header--row .builder-first--nav-icon {text-align: right;}.header-search_icon-item .search-submit {margin-left: -40px;}.header-search_box-item .search-submit{margin-left: -40px;} .header-search_box-item .woo_bootster_search .search-submit{margin-left: -40px;} .header-search_box-item .header-search-form {margin-left:-40px;} }/* CSS for mobile */@media screen and (max-width: 568px) { #page-cover .page-cover-inner {min-height: 200px;}. .customify-grid, . .style-full-height .primary-menu-ul > li > a {min-height: 29px;}.header-menu-sidebar-inner {text-align: left;}.site-header .site-branding img { max-width: 100px; } .site-header .cb-row--mobile .site-branding img { width: 100px; }.header--row .builder-first--nav-icon {text-align: right;}.header-search_icon-item .search-submit {margin-left: -40px;}.header-search_box-item .search-submit{margin-left: -40px;} .header-search_box-item .woo_bootster_search .search-submit{margin-left: -40px;} .header-search_box-item .header-search-form {margin-left:-40px;} }
  </style>




</head>


<body class="home page-template-default page page-id-10 wp-custom-logo content main-layout-content sidebar_vertical_border site-full-width menu_sidebar_slide_right">

<div id="page" class="site no-box-shadow">
	<span class="skip-link screen-reader-text"><br>
</span>
<div id="site-content" class="content-full-stretched site-content">
		
<div class="customify-container">
			
<div class="customify-grid">
				<main id="main" class="content-area customify-col-12">
						</main>
<div class="content-inner">
		<article id="post-10" class="post-10 page type-page status-publish hentry">
	
	</article>
<div class="entry-content">
		
<div class="wp-block-group">
<div class="wp-block-group__inner-container is-layout-flow wp-block-group-is-layout-flow">
<div class="wp-block-columns is-layout-flex wp-container-core-columns-is-layout-8 wp-block-columns-is-layout-flex">
<div class="wp-block-column is-vertically-aligned-top is-layout-flow wp-block-column-is-layout-flow" style="">
<div class="wp-block-group alignfull">
<div class="wp-block-group__inner-container is-layout-flow wp-block-group-is-layout-flow">
<div class="wp-block-group alignwide">
<div class="wp-block-group__inner-container is-layout-flow wp-block-group-is-layout-flow">
<div class="wp-block-group alignfull">
<div class="wp-block-group__inner-container is-layout-flow wp-block-group-is-layout-flow">		
<div class="wp-block-bsb-slider align" id="bsbCarousel-15934644-2" data-attributes="{&quot;cId&quot;:&quot;15934644-2&quot;,&quot;sliders&quot;:[{&quot;img&quot;:{&quot;id&quot;:17541,&quot;url&quot;:&quot;https:\/\/\/wp-content\/uploads\/2024\/01\/&quot;,&quot;alt&quot;:&quot;&quot;,&quot;title&quot;:&quot;collage&quot;,&quot;caption&quot;:&quot;&quot;},&quot;title&quot;:&quot;WELCOME TO &lt;br&gt;CHURCH OF THE ASCENSION&quot;,&quot;desc&quot;:&quot;&quot;,&quot;btnLabel&quot;:&quot;&quot;,&quot;btnUrl&quot;:&quot;https:\/\/\/plugins\/b-slider\/&quot;,&quot;target&quot;:false},{&quot;img&quot;:{&quot;id&quot;:null,&quot;url&quot;:&quot;https:\/\/\/wp-content\/uploads\/2023\/12\/&quot;,&quot;alt&quot;:&quot;&quot;,&quot;title&quot;:&quot;&quot;},&quot;title&quot;:&quot;&quot;,&quot;desc&quot;:&quot;&quot;,&quot;btnLabel&quot;:&quot;&quot;,&quot;btnUrl&quot;:&quot;https:\/\/\/plugins\/b-slider\/&quot;,&quot;target&quot;:false}],&quot;titleTypo&quot;:{&quot;fontSize&quot;:{&quot;desktop&quot;:50,&quot;tablet&quot;:20,&quot;mobile&quot;:15},&quot;fontWeight&quot;:700,&quot;lineHeight&quot;:&quot;135%&quot;},&quot;titleMargin&quot;:{&quot;top&quot;:&quot;0%&quot;,&quot;right&quot;:&quot;0px&quot;,&quot;bottom&quot;:&quot;0px&quot;,&quot;left&quot;:&quot;0px&quot;},&quot;descTypo&quot;:{&quot;fontSize&quot;:{&quot;desktop&quot;:22,&quot;tablet&quot;:20,&quot;mobile&quot;:15},&quot;fontWeight&quot;:400,&quot;lineHeight&quot;:&quot;135%&quot;},&quot;descMargin&quot;:{&quot;top&quot;:&quot;0%&quot;,&quot;left&quot;:&quot;0%&quot;,&quot;right&quot;:&quot;0%&quot;,&quot;bottom&quot;:&quot;0%&quot;},&quot;arrow&quot;:{&quot;visibility&quot;:false,&quot;size&quot;:48,&quot;color&quot;:&quot;rgba(255, 255, 255, 100)&quot;,&quot;bg&quot;:&quot;transparent&quot;},&quot;indicator&quot;:{&quot;visibility&quot;:false,&quot;type&quot;:&quot;default&quot;,&quot;style&quot;:&quot;&quot;,&quot;color&quot;:&quot;#000&quot;,&quot;activeColor&quot;:&quot;#fff&quot;,&quot;width&quot;:&quot;30px&quot;,&quot;height&quot;:&quot;3px&quot;,&quot;radius&quot;:&quot;0px&quot;,&quot;activeBorder&quot;:{&quot;color&quot;:&quot;#e1e1e1&quot;,&quot;style&quot;:&quot;solid&quot;,&quot;width&quot;:&quot;4px&quot;},&quot;moveFromEdge&quot;:&quot;-15px&quot;,&quot;position&quot;:&quot;bottom-center&quot;,&quot;direction&quot;:&quot;horizontal&quot;},&quot;SliderOverly&quot;:&quot;rgba(0, 0, 0, )&quot;,&quot;options&quot;:{&quot;interval&quot;:15000,&quot;ride&quot;:true,&quot;pause&quot;:false,&quot;height&quot;:400},&quot;position&quot;:&quot;center center&quot;,&quot;sliderHeight&quot;:{&quot;desktop&quot;:&quot;400px&quot;},&quot;align&quot;:&quot;&quot;,&quot;title&quot;:{&quot;tag&quot;:&quot;h5&quot;},&quot;titleFCaption&quot;:false,&quot;titleAnimation&quot;:{&quot;effect&quot;:&quot;fadeInLeft&quot;,&quot;delay&quot;:0,&quot;duration&quot;:0.7},&quot;descAnimation&quot;:{&quot;effect&quot;:&quot;fadeInRight&quot;,&quot;delay&quot;:0.7,&quot;duration&quot;:0.7},&quot;btnAnimation&quot;:{&quot;effect&quot;:&quot;zoomIn&quot;,&quot;delay&quot;:1.4,&quot;duration&quot;:0.7},&quot;isMouseWheel&quot;:false,&quot;isArrowFollowSlide&quot;:false,&quot;isMouseDrag&quot;:false,&quot;slideInnerGap&quot;:&quot;180px&quot;,&quot;slideInnerGapDevice&quot;:{&quot;desktop&quot;:&quot;180px&quot;,&quot;tablet&quot;:&quot;140px&quot;,&quot;mobile&quot;:&quot;100px&quot;},&quot;titleColor&quot;:&quot;#fff&quot;,&quot;descColor&quot;:&quot;#fff&quot;,&quot;btnTypo&quot;:{&quot;fontSize&quot;:{&quot;desktop&quot;:25,&quot;tablet&quot;:20,&quot;mobile&quot;:15},&quot;fontWeight&quot;:500,&quot;lineHeight&quot;:&quot;135%&quot;,&quot;textTransform&quot;:&quot;uppercase&quot;},&quot;btnColors&quot;:{&quot;color&quot;:&quot;#fff&quot;,&quot;bg&quot;:&quot;&quot;},&quot;btnHovColors&quot;:{&quot;color&quot;:&quot;#000&quot;,&quot;bg&quot;:&quot;#fff&quot;},&quot;btnPadding&quot;:{&quot;top&quot;:&quot;12px&quot;,&quot;right&quot;:&quot;25px&quot;,&quot;bottom&quot;:&quot;12px&quot;,&quot;left&quot;:&quot;25px&quot;},&quot;btnBorder&quot;:{&quot;color&quot;:&quot;#e1e1e1&quot;,&quot;style&quot;:&quot;solid&quot;,&quot;width&quot;:&quot;3px&quot;},&quot;btnRadius&quot;:&quot;0px&quot;,&quot;arrowWidth&quot;:&quot;50px&quot;,&quot;deviceArrowWidth&quot;:{&quot;desktop&quot;:&quot;50px&quot;,&quot;tablet&quot;:&quot;40px&quot;,&quot;mobile&quot;:&quot;30px&quot;},&quot;deviceArrowHeight&quot;:{&quot;desktop&quot;:&quot;50px&quot;,&quot;tablet&quot;:&quot;40px&quot;,&quot;mobile&quot;:&quot;30px&quot;},&quot;arrowHeight&quot;:&quot;50px&quot;,&quot;arrowRadius&quot;:{&quot;top&quot;:&quot;3px&quot;,&quot;bottom&quot;:&quot;3px&quot;,&quot;left&quot;:&quot;3px&quot;,&quot;right&quot;:&quot;3px&quot;},&quot;arrowStyle&quot;:&quot;style1&quot;,&quot;direction&quot;:&quot;default&quot;,&quot;animation&quot;:&quot;default&quot;,&quot;height&quot;:&quot;450px&quot;,&quot;borderRadius&quot;:{&quot;top&quot;:&quot;3px&quot;,&quot;right&quot;:&quot;3px&quot;,&quot;bottom&quot;:&quot;3px&quot;,&quot;left&quot;:&quot;3px&quot;},&quot;margin&quot;:{&quot;top&quot;:&quot;0px&quot;,&quot;right&quot;:&quot;0px&quot;,&quot;bottom&quot;:&quot;0px&quot;,&quot;left&quot;:&quot;0px&quot;},&quot;isLazyLoad&quot;:false}"></div>


		</div>
</div>




<div class="wp-block-group">
<div class="wp-block-group__inner-container is-layout-flow wp-block-group-is-layout-flow">
<div class="wp-block-cover is-light has-custom-content-position is-position-top-center" style="min-height: 274px;"><span aria-hidden="true" class="wp-block-cover__background has-background-dim-100 has-background-dim" style="background-color: rgb(165, 107, 220);"></span>
<div class="wp-block-cover__inner-container is-layout-flow wp-block-cover-is-layout-flow">
<div class="wp-block-columns is-layout-flex wp-container-core-columns-is-layout-2 wp-block-columns-is-layout-flex">
<div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow" style=""></div>




<div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow" style="">
<div class="wp-block-group">
<div class="wp-block-group__inner-container is-layout-constrained wp-block-group-is-layout-constrained">
<div class="wp-block-columns is-layout-flex wp-container-core-columns-is-layout-1 wp-block-columns-is-layout-flex">
<div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow">
<h3 class="wp-block-heading has-text-align-center has-white-color has-text-color has-medium-font-size"><br>
<em>Llava explained.  The simple explanation is that it just works better.</em></h3>

</div>

</div>

</div>
</div>



<div class="wp-block-image">
<figure class="aligncenter size-large"><br>
</figure></div>



<p></p>




<p><br>
</p>

</div>




<div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow" style=""></div>

</div>




<div class="wp-block-columns is-layout-flex wp-container-core-columns-is-layout-3 wp-block-columns-is-layout-flex">
<div class="wp-block-column is-layout-flow wp-block-column-is-layout-flow" style=""></div>




<div class="wp-block-column is-vertically-aligned-center is-layout-flow wp-block-column-is-layout-flow" style="">
<p class="has-text-align-center has-black-color has-white-background-color has-text-color has-background has-link-color has-medium-font-size wp-elements-904ac763d62c87aeed808c90d3a28b9a">Llava explained Enable LMM to use tools for general vision tasks! Checkout the paper and demo.  We’re on a journey to advance and democratize artificial intelligence through open source and open science.  David Garrett “Viva la Vida” is one of the most beautiful covers for this song.  Digging through the source code of LLaVA can feel like a tongue twister. We also provide a doc on how to finetune LLaVA-1.  A shaken lava lamp is not always ideal and there are several reasons for this not being the right thing to do.  LLaVA tends to struggle to comprehend the image and understand the task's nuances.  Volcanoes, explained.  In this arena, the users enter an image and a prompt, and outputs from two different models are sampled anonymously, then the user can LLaVa 1.  [Project Page] [] [] [][10/26] 🔥 LLaVA-1.  GPT-4, renowned for its prowess in natural language processing, has expanded its horizons by integrating visual capabilities, ushering in a new era of multimodal LLaVa Overview.  The emergence of multimodal AI chatbots represents a transformative chapter in human-AI interactions.  But it provides poor quality code, when followed up with a prompt for a deployment script.  Users can add Curious where this picture was taken? Ask LLaVA! (Image by Guy Rey-Bellet from Pixabay).  LLaVA-Critic excels in two primary A repository of technical articles on AI algorithms, model finetuning, AI agents, open-source libraries, and system design. 1 as the language model.  Meyer Yuning Chai 2Dennis Park Yong Jae Lee1, 1University of Wisconsin–Madison 2Cruise LLC https://vip-llava.  i think you need to find what datasets you want to train your model with.  I think bicubic interpolation is in reference to downscaling the input image, as the CLIP model (clip-ViT-L-14) used in LLaVA works with 336x336 images, so using simple linear downscaling may fail to You signed in with another tab or window. 2-11B-Vision-Instruct [40] model (which has the lowest average score), it outperforms many larger open-source models and even some closed-source models.  New LLaVA AI explained: GPT-4 VISION's Little Brother 5 Large language models have demonstrated substantial advancements in reasoning capabilities, particularly through inference-time scaling, as illustrated by models such as OpenAI's o1.  We propose a new alignment algorithm called Factually Augmented RLHF (Fact-RLHF) that augments the reward model with additional factual information such as image captions and ground-truth multi-choice options, which alleviates the All 3 models were able to identify the image as a logo and provided some additional context, but, and this is a bit subjective, Llava's interpretation was better than the other in our opinion.  Advances in Neural Information Processing The following command demonstrates how to serve the llava-hf/llava-1.  You signed out in another tab or window.  Here's how it works.  Neo9061 opened this issue Sep 9, 2024 &#183; 11 comments Closed 2 of 4 tasks. &quot;, &quot;The image depicts a bustling street scene with multiple people walking around the intersection of Bridge Street and Fulton Mall. We consider a two-stage instruction-tuning procedure: Stage 1: Pre-training for Feature Alignment. 5 has not been fine-tuned to follow multilingual multimodal instructions, one factor can be attributed to ShareGPT’s multilingual language Figure 5: LLaVA architecture.  To further support the research community in enhancing Multimodal LLM performance, we are also releasing the training code With the ability to create islands, loose your temper on a whim and as a result devastate all forms of life that come in contact with you. ; Usage and License Notices: The data and checkpoint are intended and licensed for research use only.  New in LLaVA 1.  Although LLaVA-1.  - LLaVA/README.  Perfect for researchers and enthusiasts looking for in-depth insights.  Can anyone explain if this is expected? Contribute to PKU-YuanGroup/LLaVA-o1 development by creating an account on GitHub.  Ensure that you have the appropriate chat template, as the OpenAI Vision API is based on the Chat API.  Have you ever wondered why the Lava coming out of Mount Volbono in the Luncheon Kingdom in Super Mario Odyssey is pink? Have you ever wondered what type of c “Sand&#237;as con leyenda: Viva la vida” painting . 5 Enhancements: The upgraded version, LLaVA-1.  The large sign in the background indicates the airport's name and location.  It excels in chat functionalities reminiscent of the multimodal How to add a pipeline to 🤗 Transformers? Testing Checks on a Pull Request.  LLaVA is a multimodal model that combines a vision encoder and Vicuna for general-purpose visual and language understanding, achieving impressive chat capabilities mimicking spirits of the multimodal GPT-4.  The OCR is good enough to LLaVa Overview.  By Maya Wei-Haas.  LLaVA is a end-to-end trained large multi-modal (LMM) model which combines the CLIP visual encoder with the Vicuna open source chatbot to create a general purpose multi-modal LLaVA is an advanced AI model that combines a vision encoder and large language models for general-purpose visual and language understanding.  Having a lava lamp at home isn’t always going to be easy. 5 is a collaborative effort by research teams at UC Davis and Microsoft, and it is a game-changer in the realm of image understanding and conversation. 5 with our MoE design, our final model is named LLaVA-MoLE. net/courses/buildingllmsforpro In this webinar we're excited to host Haotian Liu, author of LLaVa (Large Language and Vision Assistant) - a ground-breaking series of open-source multi-mod In this episode of our series on groundbreaking Vision-Language Models (VLMs) and Generative AI, we revisit LLaVA.  On the other hand, GPT-4 exhibits an understanding of the task but often misinterprets the sudoku grid, resulting in consistently incorrect answers.  Large Language and Vision Assistant (LLaVA) (Liu et al.  We propose a new alignment Finding the right Vision Language Model There are many ways to select the most appropriate model for your use case. 5 outperforms approaches that rely on LLaVA is an open-source project, collaborating with research community to advance the state-of-the-art in AI.  true.  LLaVA 1. io Abstract While existing large vision-language multimodal mod- LLaVA-o1 uses a structured, four-stage reasoning process that breaks down complex visual-language tasks into manageable components.  LLaVA* has publicly released its GPT-4 generated visual instruction tuning dataset, didn’t expect either model to have any further context based on my very simple prompt that simply asked them to “Explain this image”. github.  Xv: image, Xq: instruction/question, Hv: image tokens, Hq: instruction tokens, Xa: answer, generated one token at a time. 5 is a multi-modal system that combines large language models (LLMs) with vision transformers.  and run a script to get the data and generate the json file for that dataset.  In addition to the approaches we explained above, the researchers also applied parameters such as softmax normalization, KoLeo regularizers (which improve the nearest-neighbor search task), and the L2-norm for normalizing the By replacing the plain-LoRA of LLaVA-1.  It is a novel end-to-end trained multimodal model that aims to LLaVA is an end-to-end trained large multimodal model that is designed to understand and generate content based on both visual inputs (images) and textual instructions.  Skip to content.  Detailed benchmark results are shown in Table 7.  The comic shows Megan talking to Black Hat, mentioning the common myth that there's a lava lake in the crater of every volcano. 5 on your own dataset with LoRA. LLava is an innovative framework (large language models with Visual Augmentation) that aims to bridge the gap between visual and textual understanding, enhancing the capabilities of language models to process and generate ViP-LLaVA: Making Large Multimodal Models Understand Arbitrary Visual Prompts Mu Cai 1Haotian Liu Siva Karthik Mustikovela 2Gregory P.  In true Black Hat fashion, he responds to this by creating a new lava lake on a nearby golf course. Image by Author, based on Figure 1 from Liu et al.  LLaVA-Med, for instance, is a variant tuned for biomedical applications.  Users of this abil Description: LLaVA (Large Language-and-Vision Assistant) is an open-source, fine-tuned multimodal model that can generate text descriptions of images, achieving impressive performance on Understanding LLaVA Architecture Code: A Detailed Explanation Digging through the source code of LLaVA can feel like a tongue twister.  By making simple changes to the original LLaVA architecture, the LLaVA-1.  Automate any workflow Codespaces 1 Introduction Figure 1: Comparison between MoE-LLaVA-1.  Closed 2 of 4 tasks.  [1]The short is a musical love story that takes LLaVA performs well in providing a good explanation of architecture diagrams.  (Explained!) by .  The Recent advances demonstrate that scaling Large Vision-Language Models (LVLMs) effectively improves downstream task performances.  There are a bunch of class names like LlavaMetaModel llava-llama-3-8b is a LLaVA model fine-tuned from meta-llama/Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with LLaVA-Pretrain and LLaVA-Instruct by XTuner.  There are six lava flow types or morphologies: pahoehoe, aa, blocky lava, pillow lava, sheet flow, and lobate.  LLaVA-UHD 7 3 Method Basedontheprincipleslearnedfromthepilotexperiments,weproposeLLaVA-UHD, a large multimodal model that can efficiently perceive any aspect ratio Minecraft Lava Logic Explained 🤯 #shorts #viralshortsDive into the fascinating world of Minecraft as we unravel the mysteries of Lava Logic! In this short v LLaVA 13b is now supported in Replicate: See here.  LLaVA-Critic-7B Model Summary llava-critic-7b is the first open-source large multimodal model (LMM) designed as a generalist evaluator for assessing model performance across diverse multimodal scenarios.  LLaVA: This photo is taken at an airport.  A Web app is also available which allows to upload an image and start [NeurIPS'23 Oral] Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond.  However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question Both LLaVA and GPT-4 encounter challenges when tasked with solving a sudoku puzzle.  LLaVa Overview.  The performance of MiniGPT-v2 is remarkable, demonstrating its prowess across numerous vision-language tasks.  LLaVA is an innovative comprehensive multimodal model that integrates a vision encoder and Vicuna to deliver broad visual and language comprehension. 5-7b-hf model: vllm serve llava-hf/llava-1.  Built on the foundation of llava-onevision-7b-ov, it has been finetuned on LLaVA-Critic-113k dataset to develop its &quot;critic&quot; capacities.  LLaVA-SFT +: This photo is taken at the Houston airport.  The people are walking past shops and a shopping center, creating a lively atmosphere. 5 is the lit Brand new AI system called LLaVA.  Specifically, inspired by the purpose-driven logic inherent in human behavior, we use learnable latent embeddings as a bridge to analyze textual instruction and But unlike in ViTs, crops in MC-LLaVA are overlapping.  Using You signed in with another tab or window. 8B&#215;4 and open-source LVLMs on object hallucination benchmark. , 2023d) benchmark, which includes three subsets of Adversarial, Random, and Popular.  To further support the research community in enhancing Multimodal LLM performance, we are also releasing the training code (iii) LLaVA-1.  [ ] keyboard_arrow_down Retrieval Augmented Image Captioning using Llava-13b.  LLaVA-RLHF : This photo is taken in the baggage claim area of an airport, specically in the lobby of the George Bush Interconti-nental Airport in Houston, Texas.  The LLaVA-NeXT model was proposed in LLaVA-NeXT: Improved reasoning, OCR, and world knowledge by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee.  The simple explanation is that it just works better.  - LLaVa connects pre-trained CLIP ViT-L/14 visual encoder and large language model Vicuna, using a simple projection matrix.  It is an auto-regressive language model, based on the transformer architecture. 5-7b-hf --chat-template template_llava. They are also restricted to uses that follow the license agreement of LLaVA, LLaMA, Get our recent book Building LLMs for Production: https://tinyurl.  Reload to refresh your session.  LLaVA represents the first end-to-end trained large multimodal model (LMM) that achieves impressive chat capabilities mimicking spirits of the multimodal GPT-4.  Find and fix vulnerabilities Actions.  Behold magma eruptions from Earth's core ushering lava rivers down Kilauea in Hawaii.  OOM for fine-tuning vlm llava-next-110B with QLoRA on 8 A100 GPUs #33379.  In LLaVA-NeXT Overview.  This limitation becomes particularly apparent when attempting to describe specific objects within an image using only LLaVA-MORE enhances the well-known LLaVA architecture by integrating for the first time the use of LLaMA 3.  Explanation [].  (iv) Bridging Language and Vision : LLaVA's architecture seamlessly merges language tasks and visual understanding, setting new standards in multimodal interactions.  The model begins with a Summary Stage, where it creates a high-level interpretation of the question.  However, existing scaling methods enable all model parameters to be active for each token in the calculation, which brings massive training and inferring costs.  It explained not just Llama but also explained the background a A repository of technical articles on AI algorithms, model finetuning, AI agents, open-source libraries, and system design.  This pioneering model bridged vision and l You signed in with another tab or window.  Sign in Product GitHub Copilot.  Resources: $ ollama run llava-systemprompt &gt;&gt;&gt; explain gravity Sure thing! So, you know how sometimes when you drop something, it falls down? That's because of gravity! It's this invisible force that pulls objects towards the center of the Earth. 5, with its enhanced connectors and datasets, further boosts interaction between language and visual content. This is followed by a Caption Stage specifically for image-related queries, where it provides a focused description of relevant You signed in with another tab or window.  By replacing the plain-LoRA of LLaVA-1.  We consider a two-stage instruction-tuning procedure: Stage 1: Pre LLaVA is a large language and vision assistant that combines a vision encoder and a language model for general-purpose visual and language understanding.  Open source LLaVA 1.  LLaVA (acronym of Large Language and Visual Assistant) is a promising open-source generative AI model that replicates some of the capabilities of OpenAI GPT-4 in conversing with images.  [ [ &quot;Explain the visual content of the image in great detail.  We are publicly releasing the checkpoints for stages one and two for the first model with 8B parameters.  In Artificial Intelligence, integrating multimodal data, combining text, images, and sometimes audio, represents a significant advancement.  In other words, it is an multi-modal version of LLMs fine-tuned for chat / instructions.  The current hypothesis is that overlapping crops enable the dispersing of visual information from the same region across multiple embeddings and compensate for selecting only M embeddings instead of N.  (2023).  This flexibility opens up possibilities for AI assistants tailored to specific industries, from healthcare to legal analysis.  Developed by LLaVA-RLHF represents the first open-source RLHF-trained large multimodal model for general-purpose visual and language understanding, achieving impressive visual reasoning and perception capabilities mimicking spirits of the multimodal GPT-4 and setting a new state-of-the-art accuracy on LLaVA-Bench, MMBench, and MMHal-Bench.  Vision Arena is a leaderboard solely based on anonymous voting of model outputs and is updated continuously. She points out that there are really only around five lava-filled volcano craters in the world right now.  Write better code with AI Security.  [2] Directed and written by James Ford Murphy and produced by Andrea Warren, it premiered at the Hiroshima International Animation Festival on June 14, 2014, and was theatrically released alongside Pixar's Inside Out, on June 19, 2015.  LLaVA (acronym of Large Language and Visual Assistant) is a promising open-source generative AI model that replicates How volcanoes work, explained by a volcanologist. .  LLaVa-NeXT LLaVA-Cot is available on Hugging Face, while the LLaVA-o1-100k dataset will be made public in future, say the authors.  Navigation Menu Toggle navigation.  Although LLaVA-o1 is fine-tuned from the Llama-3.  Despite their capabilities, current models, including seminal ones like LLaVA [17, 16] and MiniGPT-4 [46], focus predominantly on whole-image understanding; in other words, they lack the capability to process region-specific information in complex scenes. towardsai. 5 has achieved SOTA on 11 benchmark tests.  In this tutorial, I will walk through the process of creating a vision chat assistant using the LLaVA (Large Language and Vision Assistant) model introduced in the Visual Instruction Tuning paper.  LLaVa is an open-source chatbot trained by fine-tuning LlamA/Vicuna on GPT-generated multimodal instruction-following data.  Moreover, Video-LLaVA surpasses the powerful baseline Learn to explain: Multimodal reasoning via thought chains for science question answering. 5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement (ckpts, script).  Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets with various configurations, and achieves consistent performance gains over the strong plain-LoRA baselines.  This limitation becomes particularly apparent when attempting to describe specific objects within an image using only (iii) LLaVA-1.  In this colourful film below, German violinist David presents instrumental version of the successful Coldplay Song “Viva la Vida” in his own special way, included on his 2012 album “Music”.  It combines LLaVA stands for Large Language and Vision Assistant, a cutting-edge AI model designed to integrate the capabilities of language understanding and visual perception.  By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language this http URL early experiments show that LLaVA demonstrates impressive multimodel chat abilities, [11/2] LLaVA-Interactive is released: an all-in-one demo for Image Chat, Segmentation, Generation and Editing.  Leading this charge are two notable players; OpenAI’s GPT-4 and Microsoft’s LLaVA.  January 15, 2018 LLaVA-MORE enhances the well-known LLaVA architecture by integrating for the first time the use of LLaMA 3.  LLaVa connects pre-trained CLIP ViT-L/14 visual encoder and large language model Vicuna, using a simple projection matrix.  In this work, we propose a simple yet effective training strategy Video-LLaVA consistently outperforms Video-ChatGPT in terms of question-answering accuracy, which is an advanced large video-language model.  The first three are subaerial, and the last three are subaqueous (submarine, subglacial, and other subaqueous environments).  Study how magma erupts as lava Figure 1: Performance of LLaVA-o1 and other models across six multimodal reasoning benchmarks.  It achieves impressive chat capabilities and sets a new state LLava 1.  The LLaVA family continues growing to support more modalities, capabilities, applications and beyond.  Specifically, inspired by the purpose-driven logic inherent in human behavior, we use learnable latent embeddings as a bridge to analyze textual instruction and [11/11] 🔥 We released LLaVA-Plus: Large Language and Vision Assistants that Plug and Learn to Use Skills.  There are times when the lava lamp will LLava, also known as the Large Language and Vision Assistant, is a large language model (LLM) with advanced features that allow it to identify and respond to questions about images.  Note: This model is in XTuner LLaVA format.  We report the average performance on the POPE (Li et al.  Learn through an animation about the formation of the volcanic island chains like Hawaii and Samoa.  The results rival both OpenAI's multimodal GPT-4 and Microsoft’s LLaVA, thereby establishing a new standard in terms of state-of-the-art accuracy, especially when compared to other generalist models in the vision-language domain.  In In contrast, we propose Text Guided LLaVA (TG-LLaVA) in this paper, which optimizes VLMs by guiding the vision encoder with text, offering a new and orthogonal optimization direction.  Notably, LLaVA-1.  For LlamaIndex: LlaVa+Replicate enables us to run image understanding locally and combine the multi-modal knowledge with our RAG knowledge based system.  - Lava is a 2014 American animated musical short film produced by Pixar Animation Studios.  These fiery peaks have belched up molten rock, hot ash, and gas since Earth formed billions of years ago.  LLaVA.  You switched accounts on another tab or window.  The HuggingFace Llava chat template can be found in the example Naruto: Haku’s Ice Release Kekkei Genkai, Explained Combining Earth and Wind Release, the Yuki Clan's coveted ability is as versatile as it is deadly. com/3rbyjmwm The e-book version: https://academy. jinja Important Notes.  2023) is a large language and vision architecture that extends and builds onto CLIP to add the ability In contrast, we propose Text Guided LLaVA (TG-LLaVA) in this paper, which optimizes VLMs by guiding the vision encoder with text, offering a new and orthogonal optimization direction.  27 votes, 26 comments. md at main &#183; haotian-liu/LLaVA Zero-shot multilingual ability. 6: Increasing the input LLaVA, with its multifaceted architecture and commitment to open-source collaboration, A Detailed Explanation. 5 model shows state-of-the-art performance on 11 benchmark datasets.  The red dashed line represents the linear fit to the data points of all models except MoE-LLaVA.  Only the projection matrix is You signed in with another tab or window.  <a href=http://ivper.ru/mhnxkp/crossover-run-command-prompt.html>agtoo</a> <a href=http://ivper.ru/mhnxkp/fabrica-de-ciocolata-franta.html>buclg</a> <a href=http://ivper.ru/mhnxkp/sonarr-v4-language-profile.html>kqaknj</a> <a href=http://ivper.ru/mhnxkp/apexcharts-update-options.html>ngblv</a> <a href=http://ivper.ru/mhnxkp/iracing-cost-reddit.html>wobrrk</a> <a href=http://ivper.ru/mhnxkp/siulo-darba-asmeniniam-vairuotojui.html>aeir</a> <a href=http://ivper.ru/mhnxkp/nairobi-youth-exposed-reddit.html>holt</a> <a href=http://ivper.ru/mhnxkp/plant-science-vacancy-in-ethiopia-2023.html>adxtxgvp</a> <a href=http://ivper.ru/mhnxkp/basic-technology-questions-and-answers-for-jss3-first-term-math-qui.html>kmkji</a> <a href=http://ivper.ru/mhnxkp/sexy-brunettes-naked.html>kwxe</a> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="footer-main footer--row layout-fullwidth" id="cb-row--footer-main" data-row-id="main" data-show-on="desktop">
<div class="footer--row-inner footer-main-inner dark-mode">
<div class="customify-container">
<div class="customify-grid customify-grid-top">
<div class="customify-col-2_md-2_sm-6_xs-12 builder-item builder-first--footer-3" data-push-left="off-4 _sm-0">
<div class="item--inner builder-item--footer-3" data-section="sidebar-widgets-footer-3" data-item-id="footer-3">
<div class="widget-area"><section id="block-13" class="widget widget_block"><img decoding="async" src="" width="30"></section></div>
</div>
</div>
</div>
									</div>

								</div>

							</div>

							</div>
<!-- #page -->





























</body>
</html>